基准时间限制:1 秒 空间限制:131072 KB 分值: 20
一位老木匠需要将一根长的木棒切成N段。每段的长度分别为L1,L2,......,LN(1 <=L1,L2,…,LN <= 1000,且均为整数)个长度单位。我们认为切割时仅在整数点处切且没有木材损失。
木匠发现,每一次切割花费的体力与该木棒的长度成正比,不妨设切割长度为1的木棒花费1单位体力。例如:若N=3,L1 = 3,L2 = 4,L3 = 5,则木棒原长为12,木匠可以有多种切法,如:先将12切成3+9.,花费12体力,再将9切成4+5,花费9体力,一共花费21体力;还可以先将12切成4+8,花费12体力,再将8切成3+5,花费8体力,一共花费20体力。显然,后者比前者更省体力。
那么,木匠至少要花费多少体力才能完成切割任务呢?
Input
第1行:1个整数N(2 <= N <= 50000)
第2 - N + 1行:每行1个整数Li(1 <= Li <= 1000)。
Output
输出最小的体力消耗。
Input示例
3
3
4
5
Output示例
19
经典的贪心问题,哈夫曼编码的变形,用堆实现取出集合中的最小值。
#includeusing namespace std;const int maxn = 50050;int n, a;int main() { while (scanf("%d", &n) == 1) { priority_queue